Data Intensive Science and Cloud Computing

Fares ZEKRI

Microsoft

Microsoft*

Research Connections

Introduction

From 1975 till 2005: Computing Science at CERN (www.cern.ch)

- Developing HPC distributed computing solutions for HEP
- Including the present LHC distributed computing Grid infrastructure (<u>www.eu-egee.org</u>)
- Extending support to other scientific communities in the EU European Research Area context
- Among them EUMEDGrid (2006-2007): where Morocco was represented by MaGrid (www.magrid.ma), as explained by Prof. Rajaa C. El Moursli, and hosted 1er Workshop & Tutorial in Marrakech (December 2006) followed by EUMEDGRID-Support which recently held its EUMED4 event co-located with e-Age2011 in Amman December 2011

Now: @ Microsoft Research Connections

Mission Statement:

Advancing multidisciplinary research worldwide by engaging and partnering with the Academic community, focusing on:

Breakthrough research and innovation;

Worldwide participation;

Community engagement;

Broad dissemination across;

Interoperability

A X 30 HD 100 Research

The Future: an Explosion of Data

Experiments

Simulations

Archives

Literature

Instruments

The Challenge:

Enable Discovery.

Deliver the capability to mine, search and analyze this data in near real time.

By 2020, more than 1/3rd of all digital information created annually will either live in or pass through the cloud.

(Source: EMC-sponsored IDC study)

Petabytes

Digital information created annually will grow by a factor of 44 from 2009 to 2020

A Tidal Wave of Scientific Data

Emergence of a Fourth Research Paradigm

Thousand years ago – Experimental Science

· Description of natural phenomena

Last few hundred years – Theoretical Science

• Newton's Laws, Maxwell's Equations...

Last few decades – Computational Science

• Simulation of complex phenomena

Today - Data-Intensive Science

- Scientists overwhelmed with data sets from many different sources
 - · Captured by instruments
 - Generated by simulations
 - Generated by sensor networks

- For analysis and data mining
- For data visualization and exploration
- For scholarly communication and dissemination

(With thanks to Jim Gray)

Changing Nature of Discovery

Complex models

- Multidisciplinary interactions
- Wide temporal and spatial scales

Large multidisciplinary data

- Real-time steams
- Structured and unstructured

Distributed communities

- Virtual organizations
- Socialization and management

Machine Translation: The Statistical Revolution

Instead of hand-coding rules

- Exploit large volumes of existing parallel text
- Learn how words, phrases, and structures translate in context

All Scientific Data Online

- Many disciplines overlap and use data from other sciences.
- Internet can unify all literature and data
- Go from literature to computation to data back to literature.
- Information at your fingertips –
 For everyone, everywhere
- Increase Scientific Information Velocity
- Huge increase in Science Productivity

The Cloud

- A model of computation and data storage based on "pay as you go" access to "unlimited" remote data center capabilities
- A cloud infrastructure provides a framework to manage scalable, reliable, on-demand access to applications
- A cloud is the "invisible" backend to many of our mobile applications
- Historical roots in today's Internet apps and previous DCI computing (Cluster, Grid etc.)

The Cloud is built on massive data centers

Essentially driven by economies of

scale proximate costs for a small size center (1K servers) and a larger, 100K server center.

Technolog y	Cost in small- sized Data Center	Cost in Large Data Center	Ratio
Network	\$95 per Mbps/ Month	\$13 per Mbps/ month	7.1
Storage	\$2.20 per GB/ Month	\$0.40 per GB/ month	5.7
Administration	~140 servers/ Administrator	>1000 Servers/ Administrator	7.1

Microsoft's Datacenter Evolution

Windows Azure Platform Availability

Major Motivations

- Environmental responsibility
 - Managing energy efficiently
 - Adaptive systems management
- Provisioning 100,000 servers
 - Hardware: at most one week after delivery
 - Software: at most a few hours
- Resilience during a blackout/disaster
 - Service rollover for millions of customers
- Software and services
 - End-to-end communication
 - Security, reliability, performance, reliability

Focus Client + Cloud for Research

Seamless interaction

- Cloud is the lens that magnifies the power of desktop
- Persist and share data from client in the cloud
- Analyze data initially captured in client tools, such as Excel
 - Analysis as a service (think SQL, Map-Reduce, R/MatLab)
 - Data visualization generated in the cloud, display on client
 - Provenance, collaboration, other 'core' services...

Simple Tools to Answer Complex Questions...

Imagine: the client plus the invisible backend for problem solving

Give the standard science and engineering desktop tools a seamless extension

Use a spreadsheet to invoke genomic analysis tools running on 600 servers

Use a simple script to orchestrate data analytics and mining across 10000 MRI Images

Pull data from remote instruments for visualization on the desktop

Create a revolution in scientific capability for everybody

Helping Democratise Research

VENUS-C

Virtual multidisciplinary EnviroNments USing Cloud infrastructures

Industry contribution to the European Cloud

Building an industry-quality, highly scalable & flexibale
Cloud infrastructure

A user-centric Approach

Building a Cloud Infrastructure with user needs interwoven Bringing about fundamental changes in scientific discovery & innovation

Some Success Stories

- Interactive computation of fire risk and fire propagation estimation
- Access to burst-scalable cloud compute and storage
- Web-based GIS based on Bing Map Wild Fire Demo

- Real-estate Investor
- Designer
- Engineer
- Producer of building elements
- Contractor

- Collaboratorio & its new start-up Green Prefab
- Collaborative platform for the design of ecofriendly & affordable buildings
- Selected by INTESA SAN PAOLO Start-up intitiative; expanding to US

"We feel like pioneers in the right direction to the still untouched gold mine," Furio Barzon

Extending Cloud Usage - New Pilots & Experiments

Engineering & Science

Engineering

Biology

Architecture & Civil

NEW DISCIPLINES

Earth Sciences, Healthcare, Maths, Mechanical Engineering, Physics, Social Media, Education

Start-ups

Computer resources can be scaled as required without committing to large capital purchases, which is critical to the success of our small business. **Molplex UK**

DFRC is part of the EU Flagship project PERSEUS on maritime security. Scaling our platform with VENUS-C will enable us to support future growth in terms of vessels monitored in real time & usability by operators.

Value-add for eScience

- Distributing, managing and curating data is better served by a virtual, scalable and elastic infrastructure
- Economy of scale, energy costs and environmental impact are better addressed by Cloud computing
- Virtualisation of computing infrastructure and funding agencies support
- Leading to more science per tax payer €
- Faster to deploy than conventional HPC in emerging economy

- Happy to discuss how to move forward and explore this new Cloud computing approach for science in this region
- Please do not hesitate to contact Fabrizio Gagliardi at :

fabrig@microsoft.com

Resources

- Microsoft Research
 - http://research.microsoft.com
 - Microsoft Research downloads: <u>http://research.microsoft.com/research/downloads</u>
- Microsoft External Research
 - http://research.microsoft.com/en-us/collaboration/
- Science at Microsoft
 - http://www.microsoft.com/science
- Scholarly Communications
 - http://www.microsoft.com/scholarlycomm_
- CodePlex
 - http://www.codeplex.com